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1. Introduction

Developing efficient tools to compute one-loop corrections for multi-particle processes is

an important task needed to cope with the complexity of LHC and ILC Physics. In the

last few years a big effort has been devoted by several authors to this problem [1]. The

used techniques range from analytic methods to purely numeric ones, also including semi-

numerical approaches.

In the analytical approaches, computer algebra is used to reduce generic one-loop

integrals into a minimal set of scalar integrals and remaining pieces (called rational terms),
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mainly by tensor reduction [2 – 5]. For multi-particle processes this method becomes quite

cumbersome because of the large number of generated terms.

In the numerical or semi-numerical methods a direct computation of the tensor in-

tegrals is performed [6], capable, in principle, to deal with any configuration of masses.

However, their applicability remains limited due to the high demand of computational

resources and the non-existence of an efficient automation.

In a different approach, called the unitarity cut method [7], the one-loop amplitude

rather than the individual integrals are evaluated, avoiding the computation of Feynman

diagrams. In another development, the 4-dimensional unitarity cut method has been used

for the calculation of QCD amplitudes [8], using twistor-based approaches [9]. Moreover,

a generalization of the the unitarity cut method in d dimensions, has been pursued re-

cently [10]. Nevertheless, in practice, only the part of the amplitude proportional to the

loop scalar functions can be obtained straightforwardly. The remaining rational part,

should then be reconstructed either by using a direct computation based on Feynman di-

agrams [11 – 13] or by using a bootstrap approach [14]. Furthermore the complexity of the

calculation increases away from massless theories.

In two recent papers [15, 16], we proposed a reduction technique (OPP) for arbitrary

one-loop sub-amplitudes at the integrand level [17] by exploiting numerically the set of

kinematical equations for the integration momentum, that extend the quadruple, triple and

double cuts used in the unitarity-cut method. The method requires a minimal information

about the form of the one-loop (sub-)amplitude and therefore it is well suited for a numerical

implementation. The method works for any set of internal and/or external masses, so that

one is able to study the full electroweak model, without being limited to massless theories.

In [18] the OPP method has been used, in the framework of the unitarity cut technique, to

explicitly compute the subtraction terms needed not to double count the contribution of

the various scalar integrals.

In this paper, we describe a FORTRAN90 implementation of the OPP algorithm. In section

2, we recall the basics of the method and present our solution to compute Rational Terms

and to deal with numerical inaccuracies. In section 3 we outline the conventions used in

the program. In section 4 we describe the FORTRAN90 code that implements the method

and, in the last section, we discuss our conclusions. Finally, two appendices integrate the

content of the paper.

2. Theory and general features

2.1 The OPP method

The starting point of the OPP reduction method is the general expression for the integrand

of a generic m-point one-loop (sub-)amplitude [15]

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 − m2
i , p0 6= 0 . (2.1)

In the previous equation, we use a bar to denote objects living in n = 4+ǫ dimensions, and

q̄2 = q2+ q̃2, where q̃2 is ǫ-dimensional and (q̃ ·q) = 0. N(q) is the 4-dimensional part of the
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numerator function of the amplitude. If needed, the ǫ-dimensional part of the numerator

should be treated separately, as explained in [19]. N(q) depends on the 4-dimensional

denominators Di = (q + pi)
2 − m2

i as follows

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i6=i0,i1,i2

Di

+

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+

m−1
∑

i0

[a(i0) + ã(q; i0)]

m−1
∏

i6=i0

Di

+P̃ (q)

m−1
∏

i

Di . (2.2)

Inserted back in eq. (2.1), this expression simply states the multi-pole nature of any m-

point one-loop amplitude, that, clearly, contains a pole for any propagator in the loop,

thus one has terms ranging from 1 to m poles. Notice that the term with no poles,

namely that one proportional to P̃ (q) is polynomial and vanishes upon integration in

dimensional regularization; therefore does not contribute to the amplitude, as it should be.

The coefficients of the poles can be further split in two pieces. A piece that still depend

on q (the terms d̃, c̃, b̃, ã), that vanishes upon integration, and a piece that do not depend

on q (the terms d, c, b, a). Such a separation is always possible, as shown in [15], and,

with this choice, the latter set of coefficients is therefore immediately interpretable as the

ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop functions contributing

to the amplitude.

Once eq. (2.2) is established, the task of computing the one-loop amplitude is then

reduced to the algebraical problem of fitting the coefficients d, c, b, a by evaluating the

function N(q) a sufficient number of times, at different values of q, and then inverting the

system. That can be achieved quite efficiently by singling out particular choices of q such

that, systematically, 4, 3, 2 or 1 among all possible denominators Di vanishes. Then the

system of equations is solved iteratively. First one determines all possible 4-point functions,

then the 3-point functions and so on. For example, calling q±0 the 2 (in general complex)

solutions for which

D0 = D1 = D2 = D3 = 0 , (2.3)

(there are 2 solutions because of the quadratic nature of the propagators) and since the

functional form of d̃(q; 0123) is known, one directly finds the coefficient of the box diagram

containing the above 4 denominators through the two simple equations

N(q±0 ) = [d(0123) + d̃(q±0 ; 0123)]
∏

i6=0,1,2,3

Di(q
±
0 ) . (2.4)

– 3 –



J
H
E
P
0
3
(
2
0
0
8
)
0
4
2

This algorithm also works in the case of complex denominators, namely with complex

masses. Notice that the described procedure can be performed at the amplitude level. One

does not need to repeat the work for all Feynman diagrams, provided their sum is known:

we just suppose to be able to compute N(q) numerically.

The modifications one has to apply to the method when working in d = 4+ǫ dimensions

are described in the next subsection.

As a further remark notice that, since the terms d̃, c̃, b̃, ã still depend on q, also the

separation among terms in eq. (2.2) is somehow arbitrary. Terms containing a different

numbers of denominators can be shifted from one piece to the other in eq. (2.2), by relaxing

the requirement that the integral over the terms containing q vanishes. This fact provides

an handle to cure numerical instabilities occurring at exceptional phase-space points. In

CutTools such a mechanism is implemented for the 2-point part of the amplitude, as

described in subsection 2.3 .

2.2 The rational terms

The described procedure works in 4 dimensions. However, even when starting from a

perfectly finite tensor integral, the tensor reduction may eventually lead to integrals that

need to be regularized.1 Such tensors are finite, but tensor reduction iteratively leads to

rank m m-point tensors with 1 ≤ m ≤ 5, that are ultraviolet divergent when m ≤ 4. For

this reason, we introduced, in eq. (2.1), the d-dimensional denominators D̄i, that differs by

an amount q̃2 from their 4-dimensional counterparts

D̄i = Di + q̃2 . (2.5)

The result of this is a mismatch in the cancellation of the d-dimensional denominators of

eq. (2.1) with the 4-dimensional ones of eq. (2.2). The rational part of the amplitude,

called R1 [20], comes from such a lack of cancellation and is computed automatically in

CutTools.

A different source of Rational Terms, called R2, can also be generated from the ǫ-

dimensional part of N(q) (that is missing in eq. (2.1)), and should be added on the top of

CutTools’s results. R2 can be easily computed by using dedicated tree-level like Feynman

rules, as explained in detail in [20]. The user’s conceptual effort required to provide R2 is

the same needed to supply the input function N(q). We therefore consider the problem of

computing R2 completely trivial and solved once for all.

The Rational Terms R1 are generated by the following extra integrals, introduced

in [15]
∫

dnq̄
q̃2

D̄iD̄j

= −
iπ2

2

[

m2
i + m2

j −
(pi − pj)

2

3

]

+ O(ǫ) ,

∫

dnq̄
q̃2

D̄iD̄jD̄k

= −
iπ2

2
+ O(ǫ) ,

∫

dnq̄
q̃4

D̄iD̄jD̄kD̄l

= −
iπ2

6
+ O(ǫ) .

1We use dimensional regularization as a regulator.
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(2.6)

The coefficients of the above integrals are computed in CutTools by looking at the implicit

mass dependence (namely reconstructing the q̃2 dependence) in the coefficients d, c, b of

the one-loop functions, once q̃2 is reintroduced through the mass shift

m2
i → m2

i − q̃2. (2.7)

One gets

b(ij; q̃2) = b(ij) + q̃2b(2)(ij) ,

c(ijk; q̃2) = c(ijk) + q̃2c(2)(ijk) . (2.8)

Furthermore, by using eq. (2.7), the first line of eq. (2.2) becomes

D(m)(q, q̃2) ≡

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3; q̃
2) + d̃(q; i0i1i2i3; q̃

2)
]

m−1
∏

i6=i0,i1,i2,i3

D̄i , (2.9)

and the following expansion holds

D(m)(q, q̃2) =
m

∑

j=2

q̃(2j−4)d(2j−4)(q) , (2.10)

where the last coefficient is independent on q

d(2m−4)(q) = d(2m−4) . (2.11)

In practice, once the 4-dimensional coefficients have been determined, CutTools redoes the

fits for different values of q̃2, in order to determine b(2)(ij), c(2)(ijk) and d(2m−4). Such

three quantities are the coefficients of the three extra scalar integrals listed in eq. (2.6),

respectively.

A different way of computing d(2m−4) is implemented in CutTools when the Logical

variable inf is set to .true. in subroutine dp get coefficients and subroutine

mp get coefficients. In this case the code computes

d(2m−4) = lim
q̃2→∞

D(m)(q, q̃2)

q̃(2m−4)
. (2.12)

This limit is numerically quite stable and the computation faster. However, the default for

inf is .false..

2.3 Dealing with numerical inaccuracies

During the fitting procedure to determine the coefficients, numerical inaccuracies may occur

due to

1. appearance of Gram determinants in the solutions for which 4, 3, 2 or 1 denominators

vanish;
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2. vanishing of some of the remaining denominators, when computed at a given solution;

3. instabilities occurring when solving systems of linear equations;

In principle, each of these three sources of instabilities can be cured by performing a proper

expansion around the problematic Phase-Space point.2 An attempt in this direction is

described in [16]. However, this often results in a huge amount of work that, in addition,

spoils the generality of the algorithm. Furthermore, one is anyway left with the problem of

choosing a separation criterion to identify the region where applying the proper expansion

rather than the general algorithm.

The solution implemented in CutTools is, instead, of a purely numerical nature and

relies on a unique feature of the OPP method: the fact that the reduction is performed at the

integrand level. In detail, the OPP reduction is obtained when, as in eq. (2.2), the numerator

function N(q) is rewritten in terms of denominators. Therefore N(q) computed for some

arbitrary value of q by using the l. h. s. of eq. (2.2) should always be numerically equal to

the result obtained by using the expansion in the r. h. s. This is a very stringent test that

is applied in CutTools for any Phase-Space point.3 When, in an exceptional Phase-Space

point, these two numbers differ more than a user defined quantity (limit), the coefficients

of the loop functions for that particular point are recomputed by using multi-precision

routines (with up to 2000 digits) contained in CutTools [21]. The only price to be payed

by the user is writing, beside the normal ones (namely written in double-precision), a

multi-precision version of the routines computing N(q), that is anyway easily obtained by

just changing the definition of the variables used in the routines, as explained in appendix

A. The described procedure ensures that the coefficients of the scalar loop functions are

computed with the precision given by limit. This is usually sufficient; however, when

strong cancellations are expected among different loop functions, a multi-precision version

of the one-loop scalar functions should also be used. Then, a complete control over any

kind of numerical inaccuracy is guaranteed. Finally, one should mention that, usually, only

very few points are potentially dangerous, namely exceptional, so that a limited fraction of

additional CPU time is used to cure the numerical instabilities, therefore compensating the

fact that the multi-precision routines are by far much slower than the normal ones. This

procedure has been shown to work rather well in practice.

A final remark is in order. For strictly massless momenta, all Phase-Space points are

exceptional in the 2-point sector. Differently stated, expressing tensors such as
∫

dnq̄
qµ

D̄0D̄1
or

∫

dnq̄
qµqν

D̄0D̄1
(2.13)

in terms of scalar 2 and 1-point functions necessarily involves the appearance of powers of
1

(p1−p0)2
, that is always a problem when (p1 − p0)

2 = 0.

For this reason, a different basis [16] is implemented, for the 2-point sector, in

CutTools. This basis makes use of an arbitrary massless vector v and the code computes

2From now on we will denote such a point as exceptional.
3The arbitrary, complex, 4-vector q used for this test is randomly chosen by the code in a point by point

basis.
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the coefficients of the following three scalar integrals

∫

dnq̄
[(q + p0) · v]ℓ

D̄0D̄1
with ℓ = 0, 1, 2 and v2 = 0 . (2.14)

Notice that, when k2
1 ≡ (p1 − p0)

2 = 0 and m0 = m1,

∫

dnq̄
[(q + p0) · v]

D̄0D̄1
= −

(k1 · v)

2

∫

dnq̄
1

D̄0D̄1
,

∫

dnq̄
[(q + p0) · v]2

D̄0D̄1
=

(k1 · v)2

3

∫

dnq̄
1

D̄0D̄1
, (2.15)

exactly.

3. Conventions used in the program

The information to be provided by the user is

• number propagators (integer)

• rank (integer)

• num(q,qt2) (complex function)

• den0,den1,den2,den3,den4,den5 (derived types: see below)

The first variable refers to the number of propagators in the (sub)-amplitude to be com-

puted. The second variable is the maximum rank of N(q) (not greater than

number propagators, condition that is anyway always fulfilled in renormalizable gauges).

num(q,qt2) is the numerator function N(q), that, when pieces of amplitude containing a

different number of loop propagators are put together, also can depend on q̃2, that is the

second entry of the function num(q,qt2).

The last line of the above list refers to a derived type defined as follows

module def_propagator

implicit none

type propagator

integer :: i

real(kind(1.d0)) :: m2

real(kind(1.d0)), dimension(0:3) :: p

end type propagator

end module def_propagator

Therefore, denj contains the information sufficient to denote the jth loop propagator,

namely squared mass and 4-momentum. These loop propagators are internally classified

according to a binary notation denj → 2j (following the user defined input ordering). The

integer variable i of the previous derived type, is internally set to i = 2j for each propagator.

In the present version of CutTools, the maximum allowed number of loop propagators is

– 7 –
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six. When less propagators are needed, they should be loaded starting from the lowest

value of j.

At the end of the fitting procedure, the final results, namely the coefficients of the

scalar loop functions and the rational part R1, are loaded in the variables

dcoeff(0, j) , ccoeff(0, j) ,

bcoeff(0, j) , bcoeff(3, j) , bcoeff(6, j) and rat1. (3.1)

The second index labels the relevant scalar loop functions, according to the above binary

notation. For example the coefficient of the 3-point function

∫

dnq̄
1

D̄0D̄2D̄4
(3.2)

is ccoeff(0, 20 + 22 + 24) = ccoeff(0, 21) and that one of

∫

dnq̄
1

D̄1D̄2D̄3D̄4
(3.3)

is dcoeff(0, 30). Furthermore, bcoeff(0, j), bcoeff(3, j), and bcoeff(6, j) are the coef-

ficients of the scalar integrals in eq. (2.14) with ℓ = 0, 1, 2, respectively. When ℓ 6= 0, also

the knowledge of the vector v is needed.4 This information is stored in the array

vvec(0 : 3, j) , (3.4)

where the second index j follows the same binary notation used for the loop propagators.

Finally, when the multi-precision version of the code is activated, the relevant output

information is stored in the variables:

mp dcoeff(0, j) , mp ccoeff(0, j) ,

mp bcoeff(0, j) , mp bcoeff(3, j) , mp bcoeff(6, j) ,

mp vvec(0 : 3, j) and mp rat1. (3.5)

4. Program structure

The directory structure looks as follows:

avh_olo_s4.f dynamics.f90 MPREC README

cuttools.f90 kinematics.f90 process.f90 tensors.f90

DOC Makefile rambo.f type.f90

In the following, we briefly discuss the content of each file or directory in the previous list.

4The massless vector v is determined by CutTools in an event by event basis, to maximize the numerical

stability.
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4.1 avh olo s4.f

This set of routines, provided by André van Hameren, evaluates the scalar one-loop func-

tions. In the current version the fully massless scalar one-loop functions are included [22].

However, when needed, since CutTools is not limited to massless processes, a more general

repository of one-loop master integrals can be used [23].

4.2 cuttools.f90

It is the main program. The distributed version implements, as a simple example, the

reduction of a five-point function with a “toy” numerator.5 A test run output is given in

appendix B.

The user should first initialize a few variables, such as the numbers of digits used by

the multi-precision routines (idig), filling the internal tables of combinatorial factors by

the calling the subroutine load combinatorics, setting the the number of propagators for

the case at hand (number propagators), the maximum rank of N(q) (rank) and the limit

of precision below which the multi-precision routines activate (limit).

Then, for each generated Phase-Space point (the maximum number of points nitermax

should be provided at running time), the user should define the derived types denj (j = 0,

· · · , number propagators-1) referring to the loop propagators, and load them by calling

the subroutine load denominators(den0,· · ·), with a number of arguments equal to the

number of propagators.

Finally, the needed coefficients of the one-loop scalar functions and the rational part

R1 (rat1)6 are obtained by calling the subroutine get coefficients. At this point, if

the precision test described in subsection 2.3 gives a result less then limit, the pro-

gram multiplies all coefficients by the proper loop functions (this is achieved by calling

dp result(dbl prec,cutpart)), adds the rational parts and stores the event. Otherwise

the entire procedure is repeated by using multi-precision. If the test fails even using multi-

precision (that may happen if idig is too small), the event is discarded.

At the end, the code, prints out the result of the Monte Carlo Phase-Space integration

in the form of real and imaginary parts of the finite term (sigma(0)) and of the coefficients

of the 1/ǫ (sigma(1)) and 1/ǫ2 (sigma(2)) poles. A statistics is also provided of the

percentage of points computed with multi-precision or discarded.

4.3 DOC

It is a directory containing this paper and any other updated documentation.

4.4 dynamics.f90

It is the part of the code where the user has to insert the numerator function N(q), namely

the complex function num(q,qt2).

5The routines for the evaluation of the complete one-loop QCD virtual corrections to the process qq̄ →

ZZZ will also be available from our webpage.
6We recall that the rational term R2 (rat2) should be computed separately.
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4.5 kinematics.f90

It is the core of CutTools. It contains all routines needed to perform the fits. All the output

variables listed in eq. (3.1), eq. (3.4) and eq. (3.5) are located in module coefficients.

4.6 Makefile

It is the Makefile of CutTools. The user should specify, among other things, the

FORTRAN90 compiler and the compilation flags he/she is using. Notice that the multi-

precision library in MPREC should be compiled first (see next subsection).

4.7 MPREC

It is a directory containing the multi-precision package of [21]. More precisely, before

compiling CutTools, the user should go to /MPREC/mpfun90/f90 and give the command

make to compile the multi-precision library.

4.8 process.f90

All routines needed to compute N(q) should be put in this file.

4.9 rambo.f

It contains the random number generator and the routines for Phase-Space generation,

histogramming and bookkeeping of the events.

4.10 README

It is a .txt file with information on the current version of CutTools.

4.11 tensors.f90

It contains the routines needed to perform scalar products of 4-vectors.

4.12 type.f90

It contains the FORTRAN90 derived types used by CutTools.

5. Conclusion

We have presented CutTools, a program implementing the OPP reduction method [15]

to extract the coefficients of the one-loop scalar integrals from a user defined numerator

function (namely (sub)-amplitude or Feynman Diagram), as well as the rational terms of

type R1 [20]. The remaining part of the rational terms, R2, should be supplied by the user

and can be computed with extra Feynman rules, as described in [20]. The possible occurring

numerical instabilities are treated with the help of arbitrary precision routines [21]. The OPP

algorithm allowed us to implement a trivial check in order to activate the time consuming

arbitrary precision routines only when necessary.

The CutTools program can be downloaded from the URL:

http://www.ugr.es/~pittau/CutTools.
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A. Going from double to multi-precision

All routines in CutTools have been written both in a normal form (namely in double-

precision) and in a multi-precision form. Once a routine is written in normal form, the

multi-precision version of it can be easily obtained through the following changes in the

declarations statements [21]:

real(kind(1.d0)) → type(mp real)

complex(kind(1.d0)) → type(mp complex) . (A.1)

The same strategy should be applied by the user to provide the multi-precision version of

the routines to compute N(q). Finally, an interface statement can be used to call both

versions with the same name.

B. Test run output

With nitermax= 1, the final output of the program reads as follows:

Result of the integration:

real_sigma(0)= -67151075.5213172 +- 0.00000000000000

imag_sigma(0)= -28426491.5346667 +- 0.00000000000000

real_sigma(1)= 3822974.11389803 +- 0.00000000000000

imag_sigma(1)= 3694493.63813566 +- 0.00000000000000

real_sigma(2)= 1.925254707235981E-029 +- 0.00000000000000

imag_sigma(2)= -1.427701757691647E-028 +- 0.00000000000000

– 11 –
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Statistics on the mp routines:

percentage of mp points= 0.00000000000000

percentage of discarded points= 0.00000000000000

digits used in mp routines (if called) = 57
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